preparation procedure and for many valuable discussions. Linguistic corrections have been made by Dr Kenneth Wing. This work is part of a programme financially supported by the Swedish National Science Research Council.

References

Antti, B.-M. (1976). Acta Chem. Scand. A 30, 24-30.
Atovmyan, L. O., Tкachev, V. V. \& Shishova, T. G. (1972). Dokl. Phys. Chem. Sect. 205 (7), 622-623.

Coppens, P. \& Hamilton, W. C. (1970). Acta Cryst. A26, 71-83.
Dexter, D. D. \& Silverton, J. V. (1968). J. Amer. Chem. Soc. 90, 3589-3590.
Hamilton, W. C. (1965). Acta Cryst. 18, 502-510.
Hedman, B. (1973). Acta Chem. Scand. 27, 3335-3354.

Hedman, B. (1974). Acta Chem. Scand. A28, 591-592.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.

IUPAC (1970). Nomenclature of Inorganic Chemistry, 2nd ed., p. 80. London: Butterworths.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.
Kim, H. S., Jeffrey, G. A. \& Rosenstein, R. D. (1968). Acta Cryst. B24, 1449-1455.
Pawley, G. S. (1970). Acta Cryst. A26, 691-692.
Pettersson, L. (1972). Acta Chem. Scand. 26, 4067-4083.
Shaw, E. H. Jr, Daniels, D. \& Sawyer, L. D. (1967). Proc. S. Dakota Acad. Sci. 46, 174-175.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Strandberg, R. (1975). Acta Chem. Scand. A29, 350-358. Werner, P.-E. (1969). Ark. Kem. 31, 513-516.

Multicomponent Polyanions.
 16. The Molecular and Crystal Structure of $\mathrm{Na}_{6} \mathrm{Mo}_{5} \mathrm{P}_{2} \mathrm{O}_{23}\left(\mathrm{H}_{2} \mathrm{O}\right)_{14}$, a Compound Containing Sodium-Coordinated Pentamolybdodiphosphate Anions

By Britt Hedman
Department of Inorganic Chemistry, University of Umeå, S-901 87 Umeå, Sweaэn

(Received 9 March 1977; accepted 4 April 1977)

Abstract

The crystal structure of $\mathrm{Na}_{6} \mathrm{Mo}_{5} \mathrm{P}_{2} \mathrm{O}_{23}\left(\mathrm{H}_{2} \mathrm{O}\right)_{14}$ has been determined from three-dimensional X-ray diffraction data collected with a Pailred diffractometer using Mo $K a$ radiation. The crystals are orthorhombic with space group $P 22_{1} 2_{1}$, cell dimensions $a=15.8304$ (9), $b=19.876$ (1), $c=10.6828$ (6) \AA and $Z=4$. Full-matrix least-squares refinements of positional and anisotropic thermal parameters based on 6171 independent reflexions resulted in a final R value of $0 \cdot 024$. The $\mathrm{Mo}_{5} \mathrm{P}_{2} \mathrm{O}_{23}^{6-}$ anion consists of a ring formed by five MoO_{6} octahedra with one PO_{4} tetrahedron attached to each side of the ring. The Mo-Mo distances vary between 3.355 and $3.377 \AA$ for edge-sharing octahedra and the distance is 3.6604 (4) \AA when a corner is shared. In each octahedron the Mo-O distances are distributed with two distances in each of the three ranges 1.70 $1 \cdot 73,1.90-1.95$ and $2 \cdot 17-2.39 \AA$ depending on coordination number. The $\mathrm{P}-\mathrm{O}$ distances vary between 1.50 and $1.57 \AA$. The anions are held together in a three-dimensional framework by $\mathrm{O}-\mathrm{Na}-\mathrm{O}$ and $\mathrm{O}-\mathrm{Na}-$ $\mathrm{H}_{2} \mathrm{O}-\mathrm{Na}-\mathrm{O}$ linkages as well as by hydrogen bonds. Four of the Na ions are surrounded by six, and two Na ions by five, anion O or water O atoms, in distorted octahedral, trigonal prismatic and square pyramidal arrangements. The $\mathrm{Na}-\mathrm{O}$ distances are in the range $2 \cdot 32-2 \cdot 83 \AA$.

Introduction

Aqueous equilibria between $\mathrm{H}^{+}, \mathrm{MoO}_{4}^{2-}$ and HPO_{4}^{2-} in a $3.0 \mathrm{M} \mathrm{Na}\left(\mathrm{ClO}_{4}\right)$ medium have been investigated by potentiometric, spectrophotometric and Raman methods (Pettersson, 1974, 1975). The EMF measurements covered the range $1.5<-\log \left[\mathrm{H}^{+}\right]<9$. Leastsquares analyses of the data indicated the formation of two series of complexes: $\left(\mathrm{H}^{+}\right)_{p}\left(\mathrm{MoO}_{4}^{2-}\right)_{5}\left(\mathrm{HPO}_{4}^{2-}\right)_{2}$ with $p=8,9$ and 10 , and $\left(\mathrm{H}^{+}\right)_{p}\left(\mathrm{MoO}_{4}^{2-}\right)_{9}\left(\mathrm{HPO}_{4}^{2-}\right)$ with $p=$ $14,15,16$ and 17. At the ratio $\left[\mathrm{MoO}_{4}^{2-}\right] /\left[\mathrm{HPO}_{4}^{2-}\right]=$ $2 \cdot 5$ the ($p, 5,2$) complexes were totally dominant.

Crystallization experiments were carried out parallel with these investigations. A number of phases containing the complexes were obtained and have been or are being investigated by X-ray structure determination methods (Table 1). The identity between the complexes in solution and those in crystals has been confirmed by large-angle X-ray scattering methods (Johansson, Pettersson \& Ingri, 1974).

This paper presents the crystal structure of $\mathrm{Na}_{6} \mathrm{Mo}_{5} \mathrm{P}_{2} \mathrm{O}_{23}\left(\mathrm{H}_{2} \mathrm{O}\right)_{14}(A)$, corresponding to the $\left(\mathrm{H}^{+}\right)_{8}\left(\mathrm{MoO}_{4}^{2-}\right)_{5}\left(\mathrm{HPO}_{4}^{2-}\right)_{2}$ complex. Another phase containing this complex, $\mathrm{Na}_{6} \mathrm{Mo}_{5} \mathrm{P}_{2} \mathrm{O}_{23}\left(\mathrm{H}_{2} \mathrm{O}\right)_{13}(B)$, has

Table 1. Chemical formula, complex composition and crystallographic data for the phases obtained in the aqueous $\mathrm{H}^{+}-\mathrm{MoO}_{4}^{2-}-\mathrm{HPO}_{4}^{2-}$ system

Formula	$\begin{aligned} & \text { Complex } \\ & \text { composition } \\ & (p, q, r) \end{aligned}$	Crystal system	Cell dimensions $\left(\AA,{ }^{\circ}\right)$	Space group	$\begin{aligned} & \text { Density, } D_{m} \\ & \left(\mathrm{~g} \mathrm{~cm}^{-3}\right) \end{aligned}$	Z	Reference
$\mathrm{Na}_{6} \mathrm{Mo}_{5} \mathrm{P}_{2} \mathrm{O}_{23}\left(\mathrm{H}_{2} \mathrm{O}\right)_{13}$	$(8,5,2)$	Orthorhombic	$\begin{aligned} & a=15.423 \\ & b=16.896 \\ & c=12.394 \end{aligned}$	Pben	2.62	4	1
$\mathrm{Na}_{6} \mathrm{Mo}_{5} \mathrm{P}_{2} \mathrm{O}_{23}\left(\mathrm{H}_{2} \mathrm{O}\right)_{14}$	$(8,5,2)$	Orthorhombic	$\begin{aligned} & a=15.8304 \\ & b=19.876 \\ & c=10 \cdot 6828 \end{aligned}$	$P 2,2,2$,	$2 \cdot 56$	4	2
$\mathrm{Na}_{5} \mathrm{HMO}_{5} \mathrm{P}_{2} \mathrm{O}_{23}\left(\mathrm{H}_{2} \mathrm{O}\right)_{7-9}$	$(9,5,2)$	Triclinic	$\begin{aligned} & a=10.448 \quad \alpha=89.85 \\ & b=18.656 \quad \beta=108.74 \\ & c=8.318 \quad \gamma=101.30 \end{aligned}$	P1	$2 \cdot 66$	2	3
$\mathrm{Na}_{4} \mathrm{H}_{2} \mathrm{Mo}_{5} \mathrm{P}_{2} \mathrm{O}_{23}\left(\mathrm{H}_{2} \mathrm{O}\right)_{10}$	$(10,5,2)$	Monoclinic	$\begin{aligned} & a=26.388 \\ & b=13.661 \quad \beta=91.37 \\ & c=8.041 \end{aligned}$	$P 21 / n$	$2 \cdot 71$	4	4
$\mathrm{Na}_{3} \mathrm{H}_{6} \mathrm{Mo}_{9} \mathrm{PO}_{34}\left(\mathrm{H}_{2} \mathrm{O}\right)_{12-13}$	$(17,9,1)$	Hexagonal	$\begin{aligned} a & =14.248 \\ c & =10.83 \end{aligned}$	$P 6{ }_{3}$	3.04	2	5
$\mathrm{Na}_{6} \mathrm{Mo}_{18} \mathrm{P}_{2} \mathrm{O}_{62}\left(\mathrm{H}_{2} \mathrm{O}\right)_{24}$	(34,18,2)*	Monoclinic	$\begin{aligned} & a=23.091 \\ & b=13.481 \quad \beta=100.35 \\ & c=23.157 \end{aligned}$	C2/c	$3 \cdot 10$	4	6
$\mathrm{H}_{3} \mathrm{Mo}_{12} \mathrm{PO}_{40}\left(\mathrm{H}_{2} \mathrm{O}\right)_{29-31}$	$(23,12,1)$	Tetragonal	$\begin{aligned} & a=16.473 \\ & c=23.336 \end{aligned}$	I4, $/$ amd	2.42	4	7

References: (1) Strandberg (1973). (2) Present paper. (3) Hedman \& Strandberg (1977). (4) Hedman (1973). (5) Strandberg (1974).
(6) Strandberg (1975a). (7) Strandberg (1975b).

* Dimer of ($17,9,1$).
been investigated by Strandberg (1973). The structures contain identical heteropolyanions but differ in the arrangement of Na ions and water molecules.

Experimental

Crystal preparation, analyses and data

The crystals were grown by slow evaporation at room temperature of aqueous solutions prepared from $24.68 \mathrm{~g} \mathrm{Na}_{2} \mathrm{MoO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}, 6.37 \mathrm{~g} \mathrm{NaH} 2 \mathrm{PO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, 10.52 ml of concentrated $(11.64 \mathrm{M}) \mathrm{HClO}_{4}$ (i.e. a molar ratio of $\mathrm{H}^{+}: \mathrm{MoO}_{4}^{2-}: \mathrm{HPO}_{4}^{2-}=8: 5: 2$) and water to make the total volume 50 ml . Colourless crystals were formed within a week. The B phase is also obtained from solutions of the same composition, but transforms in solution to (A) with time. The two phases are distinguished by their crystal forms, (A) being tabular needle-like and (B) spherical. Upon exposure to air the crystals slowly decompose and those which were subjected to X -ray investigation were therefore sealed in a capillary of Lindemann glass. Elemental analysis of the crystals (Department of Analytical Chemistry, University of Umeå) gave: Mo $36 \cdot 8$, P 4.6 and Na $10.8 \mathrm{wt} \%$; calculated Mo 36.9 , P 4.8 and Na 10.6 $\mathrm{wt} \%$. The water content was determined by thermobalance analysis to be $19.4 \mathrm{wt} \%$ (calculated 19.4 wt\%).

From Weissenberg photographs the crystals were found to be orthorhombic with systematic extinctions $h 00, h=2 n+1 ; 0 k 0, k=2 n+1 ;$ and $00 l, l=2 n+1$

Table 2. Crystal data for $\mathrm{Na}_{6} \mathrm{Mo}_{5} \mathrm{P}_{2} \mathrm{O}_{23}\left(\mathrm{H}_{2} \mathrm{O}\right)_{14}$
Orthorhombic, space group $P 2,22_{1}$

$$
\begin{aligned}
& a=15 \cdot 8304(9) \AA \\
& b=19.876(1) \\
& c=10 \cdot 6828(6) \\
& V=3361 \cdot 3(6) \AA^{3} \\
& Z=4
\end{aligned}
$$

which are consistent only with space group $P 2,2,2$. Accurate unit-cell parameters were determined from Xray powder photographs taken with a Guinier-Hägg camera using $\mathrm{Cu} K \alpha_{1}$ radiation ($\lambda=1.54051 \AA$). With the data from three independent exposures, two with $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}\left\{a\left[\mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}\right]=7.85750 \AA, 25^{\circ} \mathrm{C}\right\}$ and one with $\mathrm{Si}\left\{a[\mathrm{Si}]=5.43088 \AA, 25^{\circ} \mathrm{C}\right\}$ used as the internal standard, cell parameters were refined by least-squares methods (Werner, 1969) and the results weighted together. The density of the crystals was independently determined from flotation in bromoform/carbon tetrachloride and from pycnometry with xylene as the medium. Complete crystal data are given in Table 2.

Data collection and reduction

Three-dimensional X-ray diffraction data were collected with a Philips Pailred diffractometer at $25^{\circ} \mathrm{C}$. Mo $K c r$ radiation $(\lambda=0.71069 \AA$) monochromatized with a graphite monochromator was used and measurements made with a scan speed of $1^{\circ} \mathrm{min}^{-1}$. Back-
ground was recorded for 40 s at both ends of the scan interval. The approximate dimensions of the crystal used were $0.32 \times 0.16 \times 0.28 \mathrm{~mm}$, with \mathbf{c} parallel to the 0.28 mm edge. 12728 hkl and $h \bar{k} l$ reflexions from layers $h k 0-h k 15$ were measured [$\left(\sin \theta_{\text {max }}\right) / \lambda=0.818$ $\left.\AA^{-1}\right]$. After primary data reduction and computation of the $\sigma(I)$ (Hedman, 1977), reflexions with $I<2 \sigma(I)$ were omitted as they were considered unobserved, leaving 11785 reflexions. The intensities and the $\sigma(I)$ were corrected for Lp and absorption effects. With the 6×8 $\times 8$ Gaussian grid applied the transmission factor varied from 0.531 to $0.726\left[\mu(\right.$ Mo $K x)=20.60 \mathrm{~cm}^{-1}$]. The $h k l$ and $h k l$ reflexions were then weighted together giving a unique set of 6171 reflexions.

Structure determination and refinement

From a Patterson synthesis the Mo atomic positions were located, and routine heavy-atom methods yielded the positions of the remaining non-hydrogen atoms. For the water O atom $\mathrm{Aq}(13)$ two distinct peaks appeared in the electron density maps with too short an internal distance $(\sim 1.0 \AA)$ to be considered as two separate atoms and with lower peak heights than the other water O atoms. Refinements of either position
diverged and the water molecule was therefore assumed to be distributed statistically over both positions with the sum of their occupancy factors restricted to $1 \cdot 0$. Full-matrix least-squares refinements with isotropic temperature factors gave an R value of 0.055 . As the data were severely affected by extinction, an isotropic extinction parameter (Coppens \& Hamilton, 1970) was included, which significantly improved the refinement. The refined value of the extinction parameter g^{\prime} is $6 \cdot 62$ (10). With anisotropic temperature factors the refinements converged at $R=0.024\left(R_{w}=0.028\right), R$ and R_{w} being defined as $R=\Sigma| | F_{o}\left|-\left|F_{c}\right|\right| / \Sigma\left|F_{o}\right|$ and $R_{w}=\left[\Sigma w_{i}\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2} / \Sigma w_{i}\left|F_{o}\right|^{2}\right]^{1 / 2}$ with $\Sigma w_{i}\left(\left|F_{o}\right|-\right.$ $\left.\left|F_{c}\right|\right)^{2}$ being the function minimized. A weighting scheme, $w=1 / \sigma^{2}\left(F_{o}\right)$, was applied in which $\sigma^{2}\left(F_{o}\right)$ was modified to $\sigma^{2}\left(F_{o}\right)=\sigma^{2}\left(F_{o}\right)+\left(0 \cdot 014 F_{o}\right)^{2}$. In the final cycle the parameter shifts were less than $0 \cdot 3 \sigma$. As the refinements must be divided into four blocks because of the low core memory capacity of the computer, the standard deviations may be somewhat underestimated. Computed F_{c} values for the previously omitted reflexions were all shown to be lower than or of the same magnitude as the threshold value. A final difference Fourier synthesis showed no anomalies. $\mathrm{Mo}^{3+}, \mathrm{P}, \mathrm{O}^{-}$ (anion oxygen atoms), Na^{+}and O scattering factors were used and account was taken of the real part of

Table 3. Fractional atomic coordinates $\left(\times 10^{4} ;\right.$ for Mo and $\left.\mathrm{P} \times 10^{5}\right)$
Estimated standard deviations are given in parentheses. For the oxygen atoms $\mathrm{O}(i), \mathrm{O}(i j), \mathrm{OP}(i)$ and $\mathrm{OP}(i j)$ the index indicates that the atom is bonded to molybdenum atoms i or i and j, and P indicates that it is also bonded to a phosphorus atom. Aq (i) and $\mathrm{Aq}(i j)$ are coordinated to sodium ions i or i and j.

	x	y	z		x	y	z
Mo(1)	68177 (2)	13888 (2)	21158 (3)	$\mathrm{O}(5)$	5304 (2)	34 (2)	-533 (3)
$\mathrm{Mo}(2)$	58100 (2)	18695 (2)	47547 (3)	$\mathrm{O}^{\prime}(5)$	5826 (2)	1270 (2)	-1249 (2)
$\mathrm{Mo}(3)$	37700 (2)	14392 (2)	44672 (3)	OP1	5470 (2)	-256 (1)	2786 (2)
Mo(4)	34586 (2)	11964 (2)	11021 (3)	OP2	5250 (2)	2975 (1)	1995 (3)
$\mathrm{Mo}(5)$	53953 (2)	8403 (2)	-55 (3)	$\mathrm{Na}(1)$	6736 (1)	-432 (1)	1613 (2)
$\mathrm{P}(1)$	51318 (5)	4427 (4)	29951 (7)	$\mathrm{Na}(2)$	2092 (1)	668 (1)	6871 (2)
$\mathrm{P}(2)$	49548 (5)	22513 (4)	19645 (8)	$\mathrm{Na}(3)$	5109 (1)	3807 (1)	5497 (2)
$\mathrm{O}(1)$	7596 (2)	919 (2)	2815 (3)	$\mathrm{Na}(4)$	272 (2)	1041 (1)	1293 (2)
$\mathrm{O}^{\prime}(1)$	7364 (2)	1894 (2)	1090 (3)	$\mathrm{Na}(5)$	3136 (1)	3037 (1)	797 (2)
$\mathrm{O}(12)$	6579 (2)	2048 (1)	3371 (2)	$\mathrm{Na}(6)$	6513 (1)	3074 (1)	831 (2)
O(15)	6385 (2)	705 (1)	1014 (3)	Aq(1)	7938 (3)	-98 (2)	276 (4)
OP(12)	5859 (2)	921 (1)	3422 (2)	$\mathrm{Aq}(13 a)^{*}$	3568 (7)	3682 (5)	4733 (11)
OP(15)	5615 (2)	1817 (1)	1251 (2)	$\mathrm{Aq}(13 b)^{*}$	3950 (4)	3508 (3)	4038 (6)
$\mathrm{O}(2)$	6500 (2)	1476 (2)	5746 (3)	Aq(15)	2565 (2)	4134 (2)	1594 (3)
$\mathrm{O}^{\prime}(2)$	5753 (2)	2668 (1)	5315 (3)	Aq(2)	3363 (3)	348 (2)	7927 (5)
$\mathrm{O}(23)$	4786 (2)	1491 (2)	5472 (2)	Aq(23)	710 (2)	998 (2)	6481 (3)
OP(23)	4837 (2)	1983 (1)	3331 (2)	Aq(26)	2360 (2)	1787 (1)	7389 (3)
$\mathrm{O}(3)$	3154 (2)	931 (2)	5371 (3)	Aq(34)	4269 (2)	3506 (2)	7264 (4)
$\mathrm{O}^{\prime}(3)$	3362 (2)	2226 (2)	4760 (3)	$\mathrm{Aq}^{\prime}(34)$	1251 (3)	1001 (2)	3071 (4)
OP(3)	4427 (2)	477 (1)	3970 (3)	Aq(4)	-182 (4)	-120 (2)	1538 (4)
O(34)	3270 (2)	1321 (1)	2838 (2)	Aq(45)	4347 (2)	3758 (2)	424 (3)
$\mathrm{O}(4)$	3047 (2)	397 (1)	950 (3)	Aq(46)	876 (2)	2171 (2)	1116 (4)
$\mathrm{O}^{\prime}(4)$	2682 (2)	1672 (1)	431 (3)	$\mathrm{Aq}^{\prime}(46)$	6375 (3)	4317 (2)	361 (5)
OP(4)	4104 (2)	2178 (1)	1320 (2)	Aq(5)	2283 (2)	2642 (2)	2532 (3)
O(45)	4253 (2)	1161 (1)	-282 (2)	Aq 1	4146 (3)	2087 (2)	7746 (3)
OP(45)	4726 (2)	709 (1)	1752 (2)				

[^0]the anomalous dispersion (International Tables for X-ray Crystallography, 1974). The computer programs used have been described by Antti (1976). The computations were performed with the CD 3300 and CD CYBER 172 computers at the University of Umead. Final atomic positional parameters are given in Table 3.*

[^1]

Fig. 1. The $\mathrm{O}-\mathrm{Na}-\mathrm{O}$ links in the structure projected on the $x y$ plane. Average z values are 0.25 and -0.25 for anions drawn with heavy and thin lines respectively. Symmetry operations: (i) $\frac{1}{2}+x, \frac{1}{2}-y, 1-z$; (ii) $1-x, \frac{1}{2}+y, \frac{1}{2}-z$; (iii) $\frac{1}{2}-x, 1-y$, $-\frac{1}{2}+z$; (iv) $x, 1+y, z ;$ (v) $-\frac{1}{2}+x, \frac{1}{2}-y,-z$; (vi) $\frac{1}{2}-x, 1-y$, $\frac{1}{2}+z$; (vii) $\frac{1}{2}+x, \frac{1}{2}-y,-z$; (viii) $\frac{1}{2}-x, 1-y, \frac{1}{2}+z$; (ix) $\frac{1}{2}-x$, $1-y, \frac{1}{2}+z$. Broken lines represent bonds to anions on $1+z$ compared with the anion drawn.

Description and discussion of the structure

The crystal structure consists of $\mathrm{Mo}_{5} \mathrm{P}_{2} \mathrm{O}_{23}^{6-}$ anions joined in a three-dimensional framework by Na^{+}ions and water molecules in electrostatic force links $\mathrm{O}-\mathrm{Na}-\mathrm{O}$ and $\mathrm{O}-\mathrm{Na}-\mathrm{H}_{2} \mathrm{O}-\mathrm{Na}-\mathrm{O}$ as well as by numerous hydrogen bonds. The anion pentagonal rings are approximately parallel to (010) with $\mathrm{O}-\mathrm{Na}-\mathrm{O}$ links preferentially in the [010] and diagonal directions and $\mathrm{O}-\mathrm{Na}-\mathrm{H}_{2} \mathrm{O}-\mathrm{Na}-\mathrm{O}$ links in the [100] and [001] directions (Figs. 1 and 2).

The $\mathrm{Mo}_{5} \mathrm{P}_{2} \mathrm{O}_{23}^{6-}$ anion

The anion consists of five MoO_{6} octahedra forming a ring by sharing edges in all connexions, except one in which a corner is shared $[\mathrm{O}(34)]$. Two PO_{4} tetrahedra are connected one to each side of the ring with three of

Fig. 2. Selected $\mathrm{O}-\mathrm{Na}-\mathrm{H}_{2} \mathrm{O}-\mathrm{Na}-\mathrm{O}$ links as projected on the $x z$ plane. The projection is restricted to atoms within $y \sim 0.2-0.55$. Symmetry operations as in Fig. 1.

Fig. 3. A stereoscopic view of the $\mathrm{Mo}_{3} \mathrm{P}_{2} \mathrm{O}_{23}^{6}$ anion. The thermal ellipsoids are scaled to include 50% probability (ORTEP; Johnson, 1965).

Table 4. Distances (\AA) and angles $\left({ }^{\circ}\right)$ within the $\mathrm{Mo}_{5} \mathrm{P}_{2} \mathrm{O}_{23}^{6-}$ anion in $\mathrm{Na}_{6} \mathrm{Mo}_{5} \mathrm{P}_{2} \mathrm{O}_{23}\left(\mathrm{H}_{2} \mathrm{O}\right)_{14}(A)$

Selected values from the $\mathrm{Mo}_{5} \mathrm{P}_{2} \mathrm{O}_{23}^{6-}$ anion in $\mathrm{Na}_{6} \mathrm{Mo}_{5} \mathrm{P}_{2} \mathrm{O}_{23}\left(\mathrm{H}_{2} \mathrm{O}\right)_{13}$ (B) and the $\mathrm{H}_{2} \mathrm{Mo}_{5} \mathrm{P}_{2} \mathrm{O}_{23}^{4-}$ anion in $\mathrm{Na}_{4} \mathrm{H}_{2} \mathrm{Mo}_{5} \mathrm{P}_{2} \mathrm{O}_{23}\left(\mathrm{H}_{2} \mathrm{O}\right)_{10}$ (C) have been included for comparison. Estimated standard deviations are given in parentheses.

		A	B	C
$\mathrm{Mo}(1)-\mathrm{Mo}(2)$		3.3771 (4)	(4) 3.364 (1)	3.375 (1)
$\mathrm{Mo}(1)-\mathrm{Mo}(5)$		3.3755 (4)	(4) 3.364 (1)	$3 \cdot 405$ (1)
$\mathrm{Mo}(2)-\mathrm{Mo}(3)$		$3 \cdot 3548$ (5)	(5) 3.356 (1)	$3 \cdot 389$ (1)
$\mathrm{Mo}(4)-\mathrm{Mo}(5)$		$3 \cdot 3617$ (4)	3.356(1)	$3 \cdot 391$ (1)
$\mathrm{Mo}(3)-\mathrm{Mo}(4)$		$3 \cdot 6604$ (4)	3.647 (2)	3.681 (1)
$\mathrm{Mo}(1)-\mathrm{Mo}(3)$		$5 \cdot 4403$ (5)	(5) 5.459 (2)	5.507 (1)
$\mathrm{Mo}(1)-\mathrm{Mo}(4)$		5.4403 (5)	5.459 (2)	5.520 (1)
$\mathrm{Mo}(2)-\mathrm{Mo}(5)$		$5 \cdot 5204$ (5)	5.493 (2)	5.526 (1)
$\mathrm{Mo}(2)-\mathrm{Mo}(4)$		5.5563 (4)	5.566 (1)	5.608 (1)
$\mathrm{Mo}(3)-\mathrm{Mo}(5)$		$5 \cdot 5557$ (5)) $5 \cdot 566$ (1)	5.609 (1)
$\mathrm{Mo}(2)-\mathrm{Mo}(1)-\mathrm{Mo}(5)$		109.67 (1)) 109.44 (5)	109.19 (3)
$\mathrm{Mo}(3)-\mathrm{Mo}(2)-\mathrm{Mo}$ (1)		107.83 (1)	108.63(4)	109.00 (3)
$\mathrm{Mo}(4)-\mathrm{Mo}(3)-\mathrm{Mo}(2)$		104.67 (1)	105.18(3)	104.89 (3)
$\mathrm{Mo}(5)-\mathrm{Mo}(4)-\mathrm{Mo}(3)$		104.51 (1)	105.18(3)	104.89 (3)
$\mathrm{Mo}(1)-\mathrm{Mo}(5)-\mathrm{Mo}(4)$		107.71 (1)) 108.63 (4)	108.63 (3)
$\mathrm{P}(1)-\mathrm{Mo}(1)$	$3 \cdot 3972$ (9)		$\mathrm{P}(2)-\mathrm{Mo}$ (1)	3.4149 (9)
$\mathrm{P}(1)-\mathrm{Mo}(2)$	3.5676 (8)		$\mathrm{P}(2)-\mathrm{Mo}$ (2)	3.3606 (8)
$\mathrm{P}(1)-\mathrm{Mo}(3)$	3.3231 (9)		$\mathrm{P}(2)-\mathrm{Mo}(3)$	$3 \cdot 6430$ (8)
$\mathrm{P}(1)-\mathrm{Mo}(4)$	3.6538 (9)		$\mathrm{P}(2)-\mathrm{Mo}(4)$	3.2947 (8)
$\mathrm{P}(1)-\mathrm{Mo}(5)$	3.3277 (8)		$\mathrm{P}(2)-\mathrm{Mo}(5)$	3.5748 (8)
			$\mathrm{P}(1)-\mathrm{P}(2)$	3.7700 (11)

their four O atoms in common with different MoO_{6} octahedra and with the fourth O atom extending away from the ring (Fig. 3). The Mo-Mo distances between edge-sharing octahedra vary between $3 \cdot 355-3 \cdot 377 \AA$ and the distance is 3.6604 (4) \AA when a corner is shared. The distances across the ring lie in the range $5 \cdot 440-5.556 \AA$. As can be seen from Table 4, the distances correspond more closely to the values found in (B) than to those of the $\mathrm{H}_{2} \mathrm{Mo}_{5} \mathrm{P}_{2} \mathrm{O}_{23}^{4-}$ anion in $\mathrm{Na}_{4} \mathrm{H}_{2} \mathrm{Mo}_{5} \mathrm{P}_{2} \mathrm{O}_{23}\left(\mathrm{H}_{2} \mathrm{O}\right)_{10}$ (Hedman, 1973).

The MoO_{6} octahedra are distorted with the characteristic $2+2+2$ distribution of Mo-O distances in the following three ranges: (i) $1.70-1.73 \AA, \mathrm{O}$ atom coordinated to one Mo atom only, (ii) $1 \cdot 90-1.95 \AA, 0$ atom coordinated to two Mo atoms, (iii) 2•17-2.39 \AA, O atom coordinated to P and to one or two Mo atoms. O atoms in group (i) are always in the cis position relative to one another with an atom of group (iii) in the trans position, while O atoms of group (ii) are in the trans position relative to one another. This is accompanied by an increase in the $\mathrm{O}-\mathrm{Mo}-\mathrm{O}$ angle from the ideal value when atoms of groups (i) and/or (ii) only are involved, and a corresponding decrease when at least one atom of group (iii) is present. The distortions result from the variation in π-bond character of the Mo-O bonds.

Table 4 (cont.)

	O(1)	$\mathrm{O}^{\prime}(1)$	O(12)	O(15)	OP(12)	OP(15)
$\mathrm{Mo}(1)$	1.717 (3)	1.720 (3)	1.912 (2)	1.924 (3)	$2 \cdot 262$ (3)	$2 \cdot 281$ (3)
O(1)		2.700 (4)	$2 \cdot 825$ (4)	2.749 (4)	$2 \cdot 825$ (4)	
OP(15)		2.779 (4)	$2 \cdot 769$ (4)	$2 \cdot 537$ (3)	2.949 (4)	
O(12)		2.752 (4)			2.515 (3)	
O(15)		2.827 (4)			2.738 (4)	
$\mathrm{O}(1)-\mathrm{Mo}(1)-$		103.6 (2)	102.1 (1)	97.9 (1)	89.4 (1)	
$\mathrm{OP}(15)-\mathrm{Mo}(1)-$		$86 \cdot 8$ (1)	$82 \cdot 2$ (1)	73.7 (1)	81.0 (1)	
$\mathrm{O}(12)-\mathrm{Mo}(1)-$		98.4 (1)			73.6 (1)	
$\mathrm{O}(15)-\mathrm{Mo}(1)-$		101.6(1)			81.3 (1)	
	O(2)	O (2)	O(12)	O(23)	OP(12)	OP(23)
Mo(2)	1.711 (3)	1.698 (3)	1.948 (3)	I.944 (3)	$2 \cdot 364$ (3)	$2 \cdot 176$ (2)
$\mathrm{O}(2)$		$2 \cdot 688$ (4)	-2.784 (4)	2.729 (4)	2.900 (4)	$2 \cdot 176$ (2)
OP(23)		2.907 (4)	2.761 (4)	2.489 (4)	2.661 (4)	
O(12)		$2 \cdot 746$ (4)			$2 \cdot 515$ (3)	
$\mathrm{O}(23)$		$2 \cdot 800$ (4)			2.994 (4)	
$\mathrm{O}(2)-\mathrm{Mo}(2)-$		104.1 (1)	98.9 (1)	96.4 (1)	89.2 (1)	
OP(23)-Mo(2)-		96.4 (1)	83.9 (1)	$74 \cdot 1$ (1)	71.6 (1)	
$\mathrm{O}(12)-\mathrm{Mo}(2)-$		97.5 (1)			$70 \cdot 6$ (1)	
$\mathrm{O}(23)-\mathrm{Mo}(2)-$		100.3 (1)			$87 \cdot 5$ (1)	
	O(3)	$\mathrm{O}^{\prime}(3)$	O(23)	$\mathrm{O}(34)$	$\mathrm{OP}(3)$	OP(23)
Mo(3)	1.703 (3)	1.720 (3)	1.937 (3)	1.926 (2)	$2 \cdot 240$ (3)	$2 \cdot 344$ (3)
$\mathrm{O}(3)$		2.675 (4)	2.815 (4)	2.820 (4)	$2 \cdot 666$ (4)	
OP(23)		2.832 (4)	2.489 (4)	$2 \cdot 858$ (4)	$3 \cdot 138$ (4)	
O(23)		2.792 (4)			2.639 (4)	
$\mathrm{O}(34)$		2.733 (4)			2.761 (4)	
$\mathrm{O}(3)-\mathrm{Mo}(3)-$		102.8 (2)	101.1 (1)	101.8 (1)	83.9 (1)	
OP(23)-Mo(3)-		86.9 (1)	70.4 (1)	83.4 (1)	$86 \cdot 3$ (1)	
$\mathrm{O}(23)-\mathrm{Mo}(3)-$		99.4 (1)			$78 \cdot 0$ (1)	
$\mathrm{O}(34)-\mathrm{Mo}(3)-$		$96 \cdot 9(2)$			$82 \cdot 6$ (1)	

Table 4 (cont.)

	O(4)	$\mathrm{O}^{\prime}(4)$	O(34)	O(45)	OP(4)	OP(45)
Mo(4)	1.725 (3)	1.708 (3)	1.895 (3)	1.943 (2)	$2 \cdot 215$ (3)	2.334 (2)
O(4)		2.657 (4)	2.750 (4)	2.772 (4)		2.862 (4)
OP(4)		2.643 (4)	2.698 (4)	$2 \cdot 660$ (4)		3.116 (4)
$\mathrm{O}(34)$		2.823 (4)				2.852 (4)
$\mathrm{O}(45)$		2.793 (4)				2.468 (3)
$\mathrm{O}(4)-\mathrm{Mo}(4)-$		101.4 (2)	98.8 (1)	98.0 (1)		88.3 (1)
$\mathrm{OP}(4)-\mathrm{Mo}(4)-$		83.6 (1)	81.7 (1)	79.3 (1)		86.4 (1)
$\mathrm{O}(34)-\mathrm{Mo}(4)-$		103.0(1)				84.2 (1)
$\mathrm{O}(45)-\mathrm{Mo}(4)-$		99.6 (1)				69.8 (1)
	O(5)	$\mathrm{O}^{\prime}(5)$	O(15)	O(45)	OP(15)	OP(45)
Mo(5)	1.704 (3)	1.720 (3)	1.928 (3)	1.940 (3)	$2 \cdot 385$ (3)	$2 \cdot 172$ (3)
O(5)		2.702 (4)	2.728 (4)	$2 \cdot 802$ (4)		2.932 (4)
$\mathrm{OP}(15)$		2.903 (4)	2.537 (3)	3.005 (4)		2.667 (4)
O(15)		2.809 (4)				2.743 (4)
$\mathrm{O}(45)$		2.704 (4)				2.468 (3)
$\mathrm{O}(5)-\mathrm{Mo}(5)-$		104.2 (2)	97.2 (1)	100.3 (1)		97.6 (1)
$\mathrm{OP}(15)-\mathrm{Mo}(5)-$		88.5 (1)	71.2 (1)	87.4 (1)		71.5 (1)
$\mathrm{O}(15)-\mathrm{Mo}(5)-$		$100 \cdot 6$ (1)				83.8 (1)
$\mathrm{O}(45)-\mathrm{Mo}(5)-$		$95 \cdot 1$ (1)				73.5 (1)
	OP 1	OP(3)	$\mathrm{OP}(12)$	$\mathrm{OP}(45)$		
$\mathrm{P}(1)$	1.504 (3)	1.528 (3)	1.560 (3)	1.567 (2)		
OP1		2.539 (4)	2.511 (3)	$2 \cdot 506$ (4)		
OP(3)			2.502 (4)	2.459 (4)		
$\mathrm{OP}(12)$				2.564 (4)		
OP1-P(1)-		113.7 (2)	$110 \cdot 1$ (2)	109.4 (2)		
$\mathrm{OP}(3)-\mathrm{P}(1)-$			108.2 (1)	$105 \cdot 2$ (2)		
OP(12)-P(1)-				$110 \cdot 1$ (2)		
	OP2	OP(4)	$\mathrm{OP}(15)$	$\mathrm{OP}(23)$		
P (2)	1.513 (3)	1.519 (3)	1.555 (3)	1.565 (3)		
OP2		2.513 (4)	2.504 (4)	2.521 (4)		
$\mathrm{OP}(4)$			2.498 (4)	2.472 (3)		
$\mathrm{OP}(15)$				2.561 (3)		
OP2-P(2)-		112.0 (2)	109.4 (2)	109.9 (2)		
$\mathrm{OP}(4)-\mathrm{P}(2)-$			108.7 (1)	$106 \cdot 5$ (2)		
OP(15)-P(2)-				110.3 (2)		

The PO_{4} tetrahedra are less distorted with mean $\mathrm{P}-\mathrm{O}$ distances $1.51 \AA$ (unshared O), $1.52 \AA$ (O shared with one Mo atom) and $1.56 \AA$ (O shared with two Mo atoms). When the anion is protonized, as in $\mathrm{Na}_{4} \mathrm{H}_{2} \mathrm{Mo}_{5} \mathrm{P}_{2} \mathrm{O}_{23}\left(\mathrm{H}_{2} \mathrm{O}\right)_{10}$, the protons are attached to OP 1 and OP2 converting the shortest $\mathrm{P}-\mathrm{O}$ distances in this structure to the longest ones. Distances and angles within the anions are given in Table 4.

The sodium-oxygen arrangement

The $\mathrm{Na}-\mathrm{O}$ connexions, $\mathrm{O}-\mathrm{Na}-\mathrm{O}$, between the anions include only four of the six crystallographically different Na^{+}ions. The arrangement is described schematically in Fig. 1. Of the other two Na^{+}ions, $\mathrm{Na}(1)$ is attached to only one anion and takes part in $\mathrm{O}-\mathrm{Na}-\mathrm{H}_{2} \mathrm{O}-\mathrm{Na}-\mathrm{O}$ links (Figs. 1 and 2), while $\mathrm{Na}(4)$ is unattached and surrounded by water O atoms only. Eight of the twelve unshared and two of the shared
$[\mathrm{O}(15), \mathrm{OP}(4)]$ anion O atoms are in contact with Na^{+} ions (Fig. 4). The remaining four unshared O atoms $\left[O(1), O(2), O^{\prime}(3), O^{\prime}(5)\right]$ each have two water molecules at hydrogen-bond distances.

Of the six Na^{+}ions, three are surrounded by six O atoms in a distorted octahedral arrangement, $\mathrm{Na}(4)$ by six water O atoms $(\mathrm{Aq}), \mathrm{Na}(3)$ by four Aq and two anion O atoms and $\mathrm{Na}(6)$ by three Aq and three O . $\mathrm{Na}(5)$ shows trigonal prismatic coordination of three Aq and three $\mathrm{O} . \mathrm{Na}(1)$ and $\mathrm{Na}(2)$ are five-coordinated with distorted square pyramids of three Aq and two O each, but both ions have a sixth neighbour atom at a greater distance opposite the pyramidal base, viz O (5) at 3.355 (4) \AA and $A q^{\prime}(46)$ at 3.167 (6) \AA respectively. Since many of the O atoms are coordinated to two Na^{+}ions, the distorted polyhedra are connected by sharing edges and corners as indicated in Fig. 5. The $\mathrm{Na}-\mathrm{O}$ distances (Table 5) vary between 2.32 and 2.58 \AA with two exceptions. When an anion O atom is coordinated to two Na^{+}ions, one $\mathrm{Na}-\mathrm{O}$ distance is

Fig. 4. Stereoscopic view of the Na coordination to the $\mathrm{Mo}_{5} \mathrm{P}_{2} \mathrm{O}_{23}^{6-}$ anion (for clarity most Mo-shared O atoms have been omitted). The thermal ellipsoids are scaled to include 50% probability.
increased. Thus $\mathrm{Na}(5)-\mathrm{O}^{\prime}(4)$ is 2.834 (3) \AA and $\mathrm{Na}(6)-\mathrm{O}^{\prime}(1)$ is 2.719 (4) \AA. The $\mathrm{Na}-\mathrm{Na}$ distances are in the range $3.45-4.45 \AA$.

From a comparison of the $\mathrm{Na}-\mathrm{O}$ arrangement in the two structures (A) and (B), the following main differences may be noted. (i) In (B) all Na^{+}ions are coordinated to the anions, while in (A) one Na^{+}ion is surrounded by water O atoms only. (ii) For both structures four Na^{+}ions take part in direct links $\mathrm{O}-\mathrm{Na}-\mathrm{O}$, while (A) has one and (B) two Na^{+}ions attached only to one anion. (iii) The Na^{+}ions in (B) all show octahedral coordination of two O and four Aq each, while in (A) there are several coordination configurations with different numbers of coordinated O atoms. The $\mathrm{Na}-\mathrm{O}$ distances are quite comparable however, and there appears to be no significant difference between distances to anion O and water O atoms.

Fig. 5. The smallest unit necessary to describe the arrangement of the $\mathrm{Na}-\mathrm{O}$ polyhedra. Missing atom labels are to be found in Fig. 2 by superimposing the figures. The arrows indicate atoms shared with other symmetry-related units. Symmetry operations: (i) $\frac{1}{2}+x, \frac{1}{2}-y, 1-z$; (ii) $1-x, \frac{1}{2}+y, \frac{1}{2}-z$; (iii) $-\frac{1}{2}+x, \frac{1}{2}-y$, $1-z$; (iv) $\frac{1}{2}+x, \frac{1}{2}-y, 2-z$; (v) $x, y, 1+z$.

Table 5. Sodium-oxygen distances (\AA)
The superscripts refer to the following symmetry operations:

(i) $1-x,-\frac{1}{2}+y, \frac{1}{2}-z$		(v) $-\frac{1}{2}+x, \frac{1}{2}$	$\frac{1}{2}-y, \quad-z$	
(ii) $\frac{1}{2}-x$,	$y, \frac{1}{2}+z$	(vi) $-\frac{1}{2}+x, \frac{1}{2}-y, 1-z$		
(ii) $\frac{1}{2}+x, \frac{1}{2}-y, 1-z$		(vii) $\frac{1}{2}+x, \frac{1}{2}$	- $\frac{1}{2}-y, \quad-z$	
(iv) $1-x, \frac{1}{2}+y, \frac{1}{2}-z$				
$\mathrm{Na}(1)-\mathrm{Aq}\left(13 a^{\text {i }}\right.$)	2.324 (11)*		$\mathrm{Na}(4)-\mathrm{Aq}\left(45^{*}\right)$	2.381 (4)
$\mathrm{Aq}\left(15^{\text {i }}\right.$)	2.374 (4)	$\mathrm{Aq}\left(34^{\text {vi }}\right.$)	$2 \cdot 390$ (4)	
OP1	2.390 (3)	$\mathrm{Aq}(4)$	2.432 (5)	
$\mathrm{O}(15)$	2.414 (3)	Aq (46)	2.447 (4)	
Aq (1)	2.470 (5)	$\mathrm{Aq}^{\prime}(34)$	2.452 (5)	
$\mathrm{Aq}\left(13 b^{\text {i }}\right.$)	2.470 (6)*	$\mathrm{Aq}^{\prime}\left(46^{\text {v }}\right.$)	2.584 (5)	
$\mathrm{Na}(2)-\mathrm{Aq}(23)$	2.321 (4)	$\mathrm{Na}(5)-\mathrm{OP}(4)$	$2 \cdot 362$ (3)	
$\mathrm{Aq}(26)$	2.330 (4)	$\mathrm{O}^{\prime}\left(1^{\text {V }}\right.$)	$2 \cdot 362$ (4)	
$\mathrm{O}\left(4^{\text {ii) }}\right.$)	2.345 (3)	$\mathrm{Aq}(5)$	2.424 (4)	
$\mathrm{O}(3)$	2.381 (4)	$\mathrm{Aq}(45)$	2.427 (4)	
$\mathrm{Aq}(2)$	2.394 (6)	$\mathrm{Aq}(15)$	2.509 (4)	
3) $-\mathrm{Aq}(23 \mathrm{iii})$		$\mathrm{O}^{\prime}(4)$	2.834 (3)	
Aq(34)	$2 \cdot 385$ (4)	$\mathrm{Na}(6)-\mathrm{Aq}\left(26^{\text {iii }}\right)$	2.343 (4)	
$\mathrm{Aq}^{\prime}\left(34^{\text {iii }}\right.$)	2.399 (5)	$\mathrm{O}^{\prime}\left(4^{\text {vii }}\right)$	2.345 (3)	
$\mathrm{Aq}(13 b)$	2.479 (7)*	OP2	2.363 (3)	
$\mathrm{O}^{\prime}(2)$	2.491 (4)	Aq(46 ${ }^{\text {vii }}$)	2.363 (4)	
$\mathrm{O}\left(5^{\text {iv }}\right.$)	2.526 (3)	$\mathrm{Aq}^{\prime}(46)$	2.530 (4)	
Aq(13a)	2.583 (12)*	$\mathrm{O}^{\prime}(1)$	2.719 (4)	

* $\mathrm{Aq}(13)$ is disordered over two positions, see text.

A 'free' water molecule

Aq1 is the only water molecule uncoordinated to Na . It acts as a hydrogen-bond donor to $\mathrm{O}(23)$ and

Table 6. Some selected hydrogen-bond distances (\AA)
The superscripts refer to the following symmetry operations:

$$
\text { (i) } x, y, 1+z \text {; (ii) }-\frac{1}{2}+x, \frac{1}{2}-y, 1-z \text {. }
$$

$\mathrm{Aq} 1-\mathrm{Aq}(34)$	$2.873(5)$	$\mathrm{Aq}(13 a)-\mathrm{O}^{\prime}(3)$	$2.913(11)$
$\mathrm{Aq}(26)$	$2.915(5)$	$\mathrm{O}\left(1^{\text {ii }}\right)$	$3 \cdot 140(12)$
$\mathrm{O}(23)$	$2.886(4)$	$\mathrm{Aq}(13 b)-\mathrm{O}^{\prime}(3)$	$2 \cdot 821(6)$
$\mathrm{O}\left(45^{\mathrm{i}}\right)$	$2.803(4)$	OP 2	$3.181(7)$

$\mathrm{O}\left(45^{\mathrm{i}}\right)$, i.e. binds different anions in the [001] direction. It is also an acceptor of hydrogen bonds from $\mathrm{Aq}(26)$ and Aq (34). The coordination of O atoms around $\mathrm{Aq}(1)$ is tetrahedral with distances as given in Table 6.

The disordered water molecule

$\mathrm{Aq}(13)$ is, as previously mentioned, disordered over two positions with occupancy factors 0.363 (13) and 0.637 (13) for positions a and b respectively. A possible explanation for this is the formation of different weak hydrogen bonds for the two positions, in which $\mathrm{Aq}(13)$ acts as a donor, see Table 6. $\mathrm{Na}(1)$ and $\mathrm{Na}(3)$ complete a tetrahedral arrangement of atoms around $\mathrm{Aq}(13)$ in both the a and b positions.

I wish to thank Professor Nils Ingri for much valuable advice, for his great interest and for all the facilities he placed at my disposal. I also wish to express my gratitude to Dr Lage Pettersson for advice on crystal preparation and Miss Ann-Marie Nenner for technical assistance. I am indebted to Dr Kenneth Wing for revising the English text. This work forms
part of a programme financially supported by the Swedish National Science Research Council.

References

Antti, B.-M. (1976). Acta Chem. Scand. A30, 24-30.
Coppens, P. \& Hamiton, W. C. (1970). Acta Cryst. A26, 71-83.
Hedman, B. (1973). Acta Chem. Scand. 27, 3335-3354.
Hedman, B. (1977). Acta Cryst. B33, 3077-3083.
Hedman, b. \& Strandberg, R. (1977). To be published.
International Tables for X-ray Crystallography (1974). Vol. IV, pp. 71-98, 149. Birmingham: Kynoch Press.
Johansson, G., Pettersson, L. \& Ingri, N. (1974). Acta Chem. Scand. A28, 1119-1128.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.
Pettersson, L. (1974). Dissertation, Univ. of Umeå.
Pettersson, L. (1975). Chem. Scripta, 7, 145-154.
Strandberg, R. (1973). Acta Chem. Scand. 27, 10041018.

Strandberg, R. (1974). Acta Chem. Scand. A28, 217-225.
Strandberg, R. (1975a). Acta Chem. Scand. A29, 350358.

Strandberg, R. (1975b). Acta Chem. Scand. A29, 359364.

Werner, P.-E. (1969). Ark. Kem. 31, 513-516.

Multicomponent Polyanions.
 17. The Crystal Structure of $\mathrm{Na}_{4} \mathrm{Mo}_{12} \mathrm{GeO}_{40}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}$, a Compound Containing Sodium-Coordinated Dodecamolybdogermanate Anions

By Rolf Strandberg
Department of Inorganic Chemistry, University of Umeã, S-901 87 Umeå, Sweden

(Received 10 March 1977; accepted 15 March 1977)

Abstract

The crystal structure of $\mathrm{Na}_{4} \mathrm{Mo}_{12} \mathrm{GeO}_{40}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}$ has been determined from three-dimensional X-ray diffraction data collected with a Pailred diffractometer using Mo Ka radiation. There are two formula units in the triclinic ($P \overline{1}$) unit cell and the cell parameters are $a=14.421(1), b=13.187(1), c=11.596$ (1) \AA í, $a=$ 114.31 (1), $\beta=103.88$ (1) and $\gamma=76.45$ (1) ${ }^{\circ}$. The structure was refined by least-squares methods using anisotropic vibrational parameters to a final R value of 0.029 based on 9988 independent reflexions. The structure is built up of $\mathrm{Mo}_{12} \mathrm{GeO}_{40}^{4-}$ groups linked together by Na^{+}and water molecules in a three-dimensional framework. The heteropolyanion has the well known Keggin structure (a isomer). The Mo-Mo distances within the group vary between 3.32 and $3.38 \AA$ when the MoO_{6} octahedra are sharing edges and increase to $3 \cdot 70-3 \cdot 78 \AA$ when only a corner is shared. As would be expected from previous investigations, the Mo-O distances depend on the O coordination number. The four groups of $\mathrm{Mo}-\mathrm{O}$ distances observed have mean values of $1.69,1.82,2.05$ and $2.29 \AA$.

Introduction

The present crystal structure study forms part of a research project in progress in this department aimed at
elucidating the equilibria and structures of threecomponent polyanion complexes present in aqueous solutions. One of the systems studied contains the reacting components $\mathrm{H}^{+}, \mathrm{MoO}_{4}^{2-}$ and $\mathrm{Ge}(\mathrm{OH})_{4}$. The

[^0]: * The occupancy factors for $\mathrm{Aq}(13 a)$ and $\mathrm{Aq}(13 b)$ were refined to 0.363 (13) and 0.637 (13) respectively.

[^1]: * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 32642 (31 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CHI INZ, England.

